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Synopsis 

The membrane with continuously varying and pressure-dependent local permeability 
P may show a dependence of transport property for gases and vapors on the direction of 
flow. Such an asymmetry occurs only if the deviation of local permeability from 
ideality varies from layer to layer. In mathematical formulation, this means that the 
local permeability is an irreducible function of location and pressure, i.e., not a product 
of a function of location and a function of pressure. The membrane permeability is 
higher if the side with greater deviation from ideal, i.e., constant permeability, is exposed 
to the higher pressure. For two simple cases the currents in both directions and their 
ratio a t  constant pressure difference were calculated. It turns out that the asymmetry 
of permeability increases with increasing deviation from ideality up to a maximum, 
after which the membrane tends to return to symmetry. An additional result of this 
investigation is the conclusion that Fick's law, i.e., the proportionality of the diffusion 
current to the negative concentration gradient is inapplicable not only to inhomo- 
geneous membranes but also to homogeneous not ideal membranes. 

INTRODUCTION 

The asymmetric gas and vapor permeability of composite membranes 
was studied theoretically and experimentally by Rogers, Stannett, and 
Szwarc.' They found that the combination of Ethocell 610 and nylon 6 
membranes has a higher permeability for water vapor if the nylon film 
faces the vapor and the Ethocell film faces the vacuum. The former film 
has a permeability constant P increasing rapidly with vapor pressure, while 
the latter film exhibits a nearly constant P. The effect observed is in 
excellent agreement with their theoretical prediction that a membrane 
composed of two films, the permeability constant of one increasing rapidly 
with pressure while the permeability constant of the second increases only 
slightly (or not a t  all), will be more permeable if the first film is exposed to 
the high pressure than if the gradient of pressure is reversed. 

The treatment of membranes with continuously variable composition 
which might show a permeability dependence on the flux direction is 
suggested by these authors on the basis of flow rate equation 

j = ar(d/L/dz) 
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where a is a constant throughout the whole membrane and p is the chemical 
potential 

p = -RT log p (2) 
where p is the pressure of the gas in equilibrium with the particular layer of 
the membrane. From eqs. (1) and (2) they deduce that p changes linearly 
through the membrane, falling from the highest value po on one side (t = 0) 
to 0 on the other side ( x  = 1)  of the membrane. If the solubility of such a 
membrane varies linearly with the depth x ,  it may happen that at some 
stage the gas flows against the gradient of concentration, although not 
against the gradient of chemical potential. 

But they did not calculate the dependence of permeability of such a 
membrane on the flux direction. Since one can produce membranes with 
continuously varying composition,2J it seems worthwhile to investigate 
the conditions under which such films may exhibit an asymmetric perme- 
ability for vapors and gases. In  that which follows, the problem will be 
formulated quite generally and the conclusions checked on two very simple 
examples. 

GENERAL THEORY 
In  a membrane with continuously varying composition, the sorption S 

and the diffusion constant D are expected to be continuously varying func- 
tions of location x and pressure p of the gas in equilibrium with the par- 
ticular layer of the membrane. The irreversible thermodynamics yields 
for the flow of gas the equation 

j =  - (elf 1 grad cc = - (c/f) (&J/Ow (3) 
where c is the local concentration of gas 

c = C ( X , P )  = S(X1P)P (4) 
and f is the local resistance against the transport of a mole of gas or vapor 

f = f ( X , P )  = W / D ( X l P ) l .  (5 )  

The coefficient c/f is not a constant but a continuously varying function of 
x and p .  The chemical potential of the ideal gas reads 

p = p O + R T l n p  (6) 

where p0 is a constant of the gas or vapor. By introducing expressions (4) 
to (6) in the flow eq. (3)) one obtains 

j = -S-D(dp/dz)  = -P(dp/dx) (7) 

P(S,P) = S(X,P) D(X,P). ( 7 4  
The solutions of eq (7) satisfying the boundary conditions at x = 0 and 
x = I ,  being p = po and p = 0 for the flow from left to right ( j + )  and 
p = 0 and p = PO for the flow in the opposite direction 0’-), yield the 
currents j +  and j - ,  respectively, as functions of applied pressure PO.  
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The solutions are obtained by a straightforward integration if P(x,p) is 
a product of a function of x and a function of p .  One has in such a case 

= - P(X1P) (Wh) = --fl(X> *fi(P) ( d p l h )  1 (8) 
yielding 

The currentsj+ and j -  are equal. This result agrees with that obtained for 
the liquid permeability of membranes under a pressure gradient.4 The 
membrane is symnietric if the pressure dependence of permeability, i.e., of 
the product of sorption and diffusion, is the same throughout the membrane 
irrespective of the local variation of permeability a t  zero pressure (p --t 0). 
In mathematical formulation in such a case, the permeability P is a reduci- 
ble function of x and p as shown in eq (8). 

TWO SPECIAL CASES 

In  order to demonstrate the possibility of the existence of asymmetric 
membranes, let us consider two extremely simple cases of irreducible local 
permeability: 

I. 

11. 

With positive nonvanishing coefficients a, 0, and a, the permeability of the 
first membrane is more pressure dependent at x = 0 than a t  x = I ,  and the 
opposite is true for the second membrane. In  both cases the permeability 
at zero pressure is higher a t  x = 1 than at .r = 0. This situation is best 
demonstrated in Figure 1, where for a fictitious linear decrease or increase 

-.- 
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Fig. 1. Local permeabilities P+(z ,p )  and P-(z ,p)  for cases I and I1 under the arbi- 
t.rary assumption that the pressure drops ( p + )  or increases ( p - )  linearly with z (broken 
lilies). 
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of pressure through the membrane, the local permeabilities P +  and P-  are 
plotted for a1 = Ppo = l(1) and alp0 = l(I1). In the first case the Fermc- 
ability a t  z = 0 is twice as high for p = po(P+) than for p = O(P-) while a t  
x = 1 the ratio of these permeabilities is only 3/2, P is 3P0 for p = po(P-) and 
  PO for p = O(P+). In  the second case, the permeability (P-)  a t  x = 0 
is constant, independent of p ,  and a t  x = 1 it is Po for p = O(P+) and 2P0 
for p = po(P-). One hence expects a higher gas or vapor permeability of 
the membrane if in the first case the high pressure is a t  x = 0 ( j +  > j - )  and 
if in the second case i t  is a t  x = Z(j- > j+) .  

The schematic representation of local permcability in Figure 1 permits 
even a more detailed analysis. Since the pressure gradient is inversely 
proportional to the permeability, the current is inversely proportional to 
the average of inverse permeability: 

That means that the areas with low permeability are more important and 
affect more the current than those with high permeability. The pressure 
drop in case I+ for a1 = @PO is constant throughout the membrane so that 
the representation in Figure 1 indeed yields the true local permeability. 
If the flow is reversed (I-), most of the pressure drop is concentrated in the 
low permeability area at low x, thus yielding a current j -  smaller than j+.  
If one changes Ppo from 0 to 03, the ordinates Po(1 + Ppo) at x = O(I+) and 
Po(l  + a1 + Ppo) at  x = l(IJ are going up from Po and Po + al, respec- 
tively, to rn , while the other intercepts, Po at  x = O(I-) and Po(l  + al), 
a t  x = Z(I+) remain unchanged. Both straight lines representing the 
local permeabilities P +  and P -  for the fictitious case of linear drop or 
increase of p with x are identical for Ppo = 0, have almost the maximum 
difference at @PO = all and become increasingly similar with Ppo >> al. 
One hence expectsj+ = (j-1 a t  Ppo = 0, the maximum difference between 
them and therefore the maximum dissymmetry j+/lj-l close to Ppo = all 
and a decrease of asymmetry for Ppo > al. In  the limit of very large 
@po/al ,  an almost identical current will flow in both directions, and the 
membrane will be again symmetric as in the case of vanishing Ppo. 

In  case of II+, the local permeability is slightly larger than in that of I1 - 
in the first half of the membrane and substantially smaller in the second 
half. That immediately yields Ij-1 > j +  for nonvanishing positive a. 
As a consequence of the above-mentioned averaging of inverse permeability, 
however, the extremely high permeability values of 11- in the second half 
of the membrane in the case of very large up0 may be less important than 
the low values in the first half. If that is indeed so, one may expect that 
the asymmetry of the membrane in case I1 will reach a maximum a t  a 
finite apo value and subsequently decrease to a lower limit without ever 
reaching 1. The membrane is not expected to become symmetric a t  large 
apo. 



PERMEABILITY 01' ASYMMETRIC MEMBRANES 3131 

I Q = 5 0  / 

_-- 

Fig. 2. Relative currents j / j o  = (P)/Po = l /poA vs. ~ P O  for a1 = 0.5,5, and 50 (case I). 
Thin horizontal lines represent the relative currents j p d / j o  = P@d/Po  = al/ln (1 + al) 
for the membrane with pressure-independent permeability. Broken line represents the 
relative current jad / jo  = Paa/Po  = 1 + p p 0 / 2  for the homogeneous nonideal membrane. 

Case I. The solution of the flow eq. (7) reads 

@A 1 + crl: = Ce-aP/A - p p  + ; 
yielding for the currents j +  and Ij-1 the transcedental 

eapo/A+ = ffl - BPO 
+ 1 + @Po - PA+/ff 

A +  = po/.l+ 

A -  = Po/lj-l. 

The calculated values of relative permeabilities 

(P>/Po = j / j o  = l/poA 

equations 

are plotted in Figure 2 versus the dimensionless pressure parameter @PO for 
al = 0.5, 5, and 50. The thin horizontal lines represent the values 

(14) 

for the limit /3 = 0, i.e., the permeability of the membrane in the case of no 
pressure dependence. In  this limit, Ppo = 0, the local permeability is 

Pp=o/Po = d / l n  (1 + al) 
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Fig. 3. Asymmetry j + / ~  j-1 = (P+)/(P-) vs. gpo for different values of al. 

independent of p .  In  spite of inhomogeneity of composition, as measured 
by all the membrane does not exhibit any directionality, P+ = P-  = PB=o. 

The asymmetry of permeability P+/P- = j+/lj-l is plotted in Figure 3 
versus Bpo with a1 as parameter. One notices that the asymmetry of the 
membrane has the expected sign. But i t  is small. The membrane is 
symmetric for PpO = 0, i.e., for a pressure-independent permeability and 
also for very small pressure. The asymmetry increases with increasing 
asymmetry of composition (al) and pressure dependence (Ppo) up to a 
maximum which, very roughly, is located close to the point where a1 -Ppo. 
The existence of the maximum and the subsequent drop in asymmetry are 
the consequences of the fact that, with increasing Ppo, the importance of 
the term CYZ in the local permeability is rapidly diminishing. The mem- 
brane becomes more symmetric with increasing nonlinearity contribution 
to the pressure dependence. The limiting permeability for a1 = 0, 

PmpO/PO = 1 + Pp0/2, (15) 

is plotted in Figure 2 as dotted curve. The asymmetry of permeability 
decreases &h increasing Ppo to the same extent as the permeability 
curves approach this limiting permeability. 

The existence of the maximum in the asymmetry is a consequence of the 
special choice of permeability dependence on x and p .  Since the choice was 
made more on the grounds of mathematical considerations to have the 
simplest, i.e., linear, dependence on x and p and not on the basis of any 
real membrane, one must not conclude that actual membranes will exhibit 
exactly the properties of case I in the whole pressure range. One can guess 
that the region between Bpo = 0 and the maximum asymmetry may de- 
scribe pretty woll the general trend of membrane directionality while tho 
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maximum and the subsequent drop very likely do not represent properties 
of a true membrane. 

Case 11. The solution of the flow eq. (7) reads 

yielding for the currents j +  and 1j-I the equations 

X k  = 1 ( ~ / 2 A * ) " ~  

u* = po (aA*/2)'/' 

A* = p o / l j * J .  

( P ) / ~ O  = j / j ,  = X/u 

Thc calculated valucs of relative permeability of thc mcnibrane 

(18) 
are plotted in Figure 4 versus cuZp0/2 = Xu. 
be larger thanj+ .  The asymmetry 

The current Ij-1 turns out to 

Ij-lLi+ = X-u+/X+u- (19) 
is plotted in Figure 5 versus alp0 = 2Xu. 

With small deviation of permeability from the zero value Po, i.e., with 
snit11 d p o ,  thc currents in oppositc dircctions :we nearly equal, arid the 
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Fig. 5 .  Asymmetry l j - / / j+  = (P-) / (P+) vs. alpo. 

membrane asymmetry is small. With increasing alpo, the difference be- 
tweenj+ and Ij-1 and the asymmetry l j - l / j+ are rapidly increasing. The 
current is larger if the side x = 0 with P = Po faces the vacuum and the 
pressure is applied to the side x = I with maximum pressure dependence 
of permeability P = Po(l + alpo) in complete agreement with the experi- 
ence on the two-layer membrane. 

The initial part of the curve l j- l / j+ is very similar to that for d = 100 
of case I as far as the absolute values and the dependence on the deviation 
from constant local permeability, i.e., 0p0 and alpO, are concerned. There 
is again a maximum in the asymmetry curve, which means that the mem- 
brane becomes more symmetric with very large deviation of permeability 
from the constant zero value PO. But the decrease of asymmetry is 
substantially lower than in case I and does not continue down to 1. The 
membrane does not become symmetric again a t  very large apo. One 
guesses that case I1 is a better model for a membrane with directionality 
than case I. 

The existence of a maximum in the asymmetry is a little surprising, since 
in case I1 the nonlinearity of local permeability is always maximum a t  
x = 1 and nonexistent a t  x = 0. But a glance a t  Figure 1 shows that for 
j +  there is a local permeability maximum in the interior of the membrane 
which enhances j +  and thus reduces the asymmetry. Such a behavior 
makes case I1 not very much different from case I as far as the maximum 
of permeability is concerned. One may speculate that it is germane to all 
kinds of vectorized gas- and vapor-permeable membranes. But the sub- 
sequent drop of asymmetry to 1 seems to be a peculiarity of the case I and 
riot a general property of asymmetric membranes. 
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CONCLUSIONS 

From these two examples one can conclude that a membrane with con- 
tinuously varying permeability exhibits directionality of the diffusion cur- 
rent if the pressure dependence of the local permeability is an irreducible 
function of pressure and location, i.e., the relative deviation from ideality 
( P  - P,,O)/P,=,, is a nonconstant function of location. This dependence 
of permeability on pressure and location can be caused by a nonideal sorp- 
tion or diffusion, or by both. The higher permeability results if the side 
with higher relative deviation from ideality is exposed to the high pressure, 
i.e., to the gas or vapor, and the more ideal side to the vacuum. The abso- 
lute value of the ideal permeability, P,=o(x), i.e., the value a t  zero pres- 
sure, influences the absolute value but not the sign of directionality. 

The actual membrane may exhibit a much stronger dependence of 
permeability on location and pressure than assumed in cases I and 11. 
One can easily include such a dependence by introducing in the models 
x" and p" instead of x and p with n and m larger than 1. Such a substitu- 
tion would increase the asymmetry. But i t  has no particular sense to 
proceed further with such calculations before one has indeed synthesized 
an asymmetric membrane with known composition arid hence with known 
dependence of P on x and p .  The present paper wants only to show under 
which conditions a membrane can exhibit an asymmetric permeability and 
how the asymmetry can be calculated from the dependence of permeability 
on location and pressure. 

The asymmetry of membrane permeability for gases and vapors is in 
many respects similar to that of permeability for liquids under an applied 
pressure difference. In  both cases the dependence of permeability on 
location and pressure must be an irreducible function of x and p; that 
means it must not be expressible as a product of a function of x and a func- 
tion of p .  The membrane permeability is larger if the diffusion current 
flows from the side with greater relative deviation of local permeability from 
the ideal, i.e., constant value, to the side with smaller relative deviation. 
The absolute values of the ideal permeability influence the magnitude but 
not the sign of directionality. 

The 
first difference is the role of pressure. In  the case of gas permeability, 
the pressure dependence of local permeability is derived from the sorption 
dependence on gas pressure and on the diffusion dependence on concentra- 
tion which in turn, via sorption, can be expressed as a function of gas pres- 
sure. In  the case of liquid permeability, the pressure dependence arises 
from the compaction of swollen and hence very compressible membrane 
under the applied pressure which is about 10 atm. No conspicuous effect 
of this type is expected in the gas permeation as long as the pressure dif- 
ference is some small fraction of 1 atm and the membrane is dry, exhibiting 
very small compressibility. Secondly, the anisotropy of membrane perme- 
ability is a steadily increasing function of applied pressure difference in the 

But there are two important differences between the two cases. 
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case of liquids permeating through the swollen membrane. With gas 
permeation, however, a maximum of asymmetry is obtained with a sub- 
sequent decrease and eventually complete disappearance at sufficiently 
high applied gas pressure. 

One can make an additional conclusion about the theoretical treatment of 
diffusion through membranes. Equation (3) becomes identical with Fick’s 
law and yields the same eq. (7) if the sorption coefficient S is a constant 
independent of pressure and location, i.e., for an ideal homogeneous mem- 
branc. Because no polymer membrane is truly ideal one must conclude that 
Fick’s law is, strictly speaking, inapplicable for the description of diffusion 
in such membranes. Even in the case of a homogeneous membrane the 
diffusion constant D, derived from permeability on th  basis of Fick’s law 
turns out to be 

DF = D/(1 + dlnS/dlnp) (20) 

i.e., different from the true diffusion constant D. By good luck in most 
papers and review articles about gas diffusion through polymer membranes 
the term dS/dp in derivation of eq. (7) from Fick’s law was forgotten as if 
S were constant in spite of the fact that the authors discussed a t  length and 
even included graphs showing the dependence of S on p .  This mathe- 
matical error apparently saved Fick’s law in polymer membrane field. 
The situation becomes much worse in the case of inhomogeneous mem- 
branes where Fick’s law yields 

and consequently a nonvanishing current 

j o  = -Dp(dS/dx) (22) 

even in the case that there is no pressure gradient across the membrane 
in striking contradiction with experience and thermodynamics. 
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